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Abstract

In this survey paper, we take a closer look at Bosonic quantum error correcting codes. First, we
give an overview of quantum error correction, then we use ideas from this overview to compare and
contrast a selection of Bosonic codes—most prominently the GKP code. Bosonic codes address
new kinds of errors, different from the errors that stabilizer codes handle. For instance, Fock-
state Bosonic codes handle photon gain, loss, and dephasing errors, while GKP codes handle
displacements in phase space. When possible, we try to explain notions of rate and distance, but
these can be hard to compare for codes over different Hilbert spaces and error models.

1 Introduction

Error correction is the art of representing infor-
mation in forms that are robust to a specific class
of errors. After such an error occurs, we’d like to
have any easy way to detect and/or correct the
error.

In order to achieve this, we must represent infor-
mation redundantly. For instance, the [7, 4] Ham-
ming code encodes 4 classical bits of information
in 7 classical bits, while Shor’s 9-qubit code en-
codes 1 qubit in 9 qubits.

We call the information we’d like to encode our
‘message’ or ‘logical state’, and we call encoded
states with no error ‘codewords’ or ‘codestates’.
The set of all codewords is called the codespace.
In the [7, 4] Hamming code, for instance, a mes-
sage would be 4 bits long, while a codeword would
be 7 bits long, and the codespace would contain
16 codewords corresponding with the 24 = 16 pos-
sible 4-bit messages.

Due to redundancy, the codespace is embedded
in a much larger space of possible states. States
outside the codespace are called error states. The
goal of error correction is to design a codespace so
that errors within our error model take codestates
to error states from which the original codestates
are recoverable.

In the case of quantum error correcting codes,
we’d also like to be able to perform gates on the
encoded states. This is necessary for the quantum

threshold theorem to hold, which states that it’s
possible to do encoded quantum computation with
arbitrarily low error so long as the error per oper-
ation is below a certain threshold [KLZ98]. This
theorem is what gives us hope that our current
noisy hardware has a chance of leading to fault-
tolerant quantum computation (FTQC).

In general, specifying a Quantum Error Correct-
ing Code (QECC) requires 4 steps: (1) Define an
error model, (2) Specify a codespace through sta-
bilizing operations (syndrome measurements), (3)
Show how to perform a universal set of gates on
encoded states, and (4) Show how to prepare and
decode codestates.

1.1 Error Models

Defining an error model means specifying the set
E of errors which we aim to correct. Note that
errors do not have to be unitary. Errors need to
satisfy two requirements:

⟨ψi|E†
aEb |ψj⟩ = 0 (1)

⟨ψi|E†
aEb |ψi⟩ = ⟨ψj |E†

aEb |ψj⟩ (2)

for all Ea, Eb ∈ E and |ψi⟩ , |ψj⟩ ∈ C [Got97],
where i ̸= j and C is the codespace. Intuitively,
the first requirement means that no two errors can
make one codestate look like another, while the
second requirement means that the operations re-
quired to correct errors are independent of what
logical state the system is in.

Note the following crucial theorem:
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Theorem 1. If a quantum code corrects errors A
and B, it also corrects any linear combination of
A and B. In particular, if it corrects all weight
t Pauli errors, then the code corrects all t-qubit
errors. [Got10]

For this reason, the codes that follow often focus
on correcting a set of errors E that form an op-
erator basis for operators (not necessarily Pauli
errors) of a certain weight (not necessarily mea-
sured in qubits).

1.2 Syndrome measurements

An operation S is said to stabilize a state |c⟩ iff
S |c⟩ = |c⟩ (here, global phase matters). Spec-
ifying a set S of stabilizing operations defines a
codespace

C = {|c⟩ : ∀S ∈ S S |c⟩ = |c⟩}.

The codespace is the subspace of the Hilbert
space in which all codestates (codewords) live.
For instance, in the 5-qubit stabilizer code, S is
the group generated by the 5-qubit Pauli tensors
XZZXI, IXZZX, XIXZZ, and ZXIXZ, and
C is the set of all states stabilized by all elements
of that group.

Note that all quantum error correcting codes have
stabilizers, not just (the somewhat confusingly
named) stabilizer codes. Stabilizer codes are sta-
bilized by Pauli operations, while non-stabilizer
codes are stabilized by non-Pauli operations.

Codes often have two dimensional codespaces—
this corresponds with leaving enough degrees of
freedom unstabilized in order to embed a single
logical qubit in the codespace. The goal is to pick
a codespace such that errors in E look very dif-
ferent from gates applied to the logical states en-
coded in the codespace.

To detect and correct errors, we can perform syn-
drome measurements of the form:

|0⟩ H • H

|ψ⟩ S

for each S ∈ S. This is similar to the swap test.
Note that for stabilizer codes, S

∣∣c⊥〉 = −
∣∣c⊥〉 for

all
∣∣c⊥〉 ⊥ C and S ∈ S, so the probability of

measuring 0 for a state |ψ⟩ = α |c⟩+ β
∣∣c⊥〉 where

|c⟩ ∈ C and
∣∣c⊥〉 ⊥ C is |α|2. This nice property

does not necessarily hold for other sets of stabiliz-
ers, for instance, those used in the GKP code.

An alternative but equivalent way to define syn-
drome measurements is to measure ⟨ψ|E†

aEb |ψ⟩
for all Ea, Eb ∈ E [Got97].

1.3 Logical Gates

Applying logical gates to the quantum state em-
bedded in the codespace C can be very code-
dependent. We will see some examples in the sec-
tions that follow.

1.4 Encoding and Decoding

Preparing the logical states of a code and decod-
ing information at the end of an encoded com-
putation can both also be very code-dependent.
We will not spend much time discussing either in
this paper, but both are crucial for making a code
useful. For instance, preparing GKP codestates
is one of the central difficulties behind creating
a scalable photonic fault-tolerant quantum com-
puter [Bou et. al. 21].
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2 Fock State Bosonic Codes

One basis for Bosonic states is the Fock (number)
basis. Fock basis states are differentiated by the
number of excitations in each mode. These ex-
citation numbers can refer to the discrete energy
levels of a list of oscillators or the count of pho-
tons in a list of modes, but the math for both is
the same. For most of this paper, we will treat
excitation numbers as photon counts.

Fock states have three new kinds of errors: pho-
ton gain, photon loss, and dephasing errors. Pho-
ton gains and losses can be caused by leakage to
and from the environment or from spontaneous
particle-anti-particle creation or annihilation. De-
phasing errors are a form of decoherence result-
ing from noise in the phases of various Fock basis
states. These errors are often expressed in terms
of creation and annihilation operators, so a code
which can correct L losses, G gains, andD dephas-
ing errors would be able to correct the set of errors
E = {I, â, . . . , âL, â†, . . . , (â†)G, ââ†, . . . , (ââ†)D}
[TCV20]. For brevity, ââ† is often denoted as n̂.

2.1 Chuang-Leung-Yamamoto codes

Chuang-Leung-Yamamoto codes [CLY97] are a
class of codes which embed k qubits into m oscil-
lators with total excitation number (total number
of particles) N . Codewords are either balanced
(particles are evenly distributed in the modes)
or are superpositions of unbalanced Fock states.
These codes have a reasonable notion of rate and
distance, and are often denoted as [[N,m, 2k, d]]
codes. The distance d is defined as the minimum
spacing between the Fock states that make up
the codewords, where the spacing between states
u = |u1, . . . , um⟩ and v = |v1, . . . , vm⟩ is

Spacing(u, v) =
1

2

m∑
i=1

|ui − vi|.

The rate of the code is defined to be

R =
k

m log2(N + 1)
.

2.2 Wasilewski Banaszek Code

The Wasilewski Banaszek Code [WB07] is a sim-
ple example of a Chuang-Leung-Yamamoto code.
Its codewords are

|L⟩ = 1√
3
(|300⟩+ |030⟩+ |003⟩)

|H⟩ = |111⟩ .

This code protects against a single photon loss in
any of its three modes. It is a [[3, 3, 2, 2]] Chuang-
Leung-Yamamoto code.

The stabilizers of the codespace are generated by

Γ2 =

1 1 1
1 ω ω2

1 ω2 ω

 , Γ3 =

1 0 0
0 1 0
0 0 ω

 ,

where ω = exp(2πi/3). Both are easily imple-
mented in beamsplitter networks. Γ2 = QFT3 is
called a “tritter,” and Γ3 is a phaseshifter applied
to one mode.

Figure 1: The stabilizers and the codespace can
be visualized as the tetrahedral group. [WB07]

The original paper also demonstrates how to en-
code a qubit from the dual-rail representation into
the Wasilewski Banaszek Code, and it shows how
to construct beamsplitters that act on the encoded
qubit, but we’ve omitted those details here for
brevity.
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2.3 Binomial Code

The Binomial code [Mich16] has codestates given
by

∣∣0〉 = 1√
2n

[0,N+1]∑
p,even

√(
N + 1

p

)
|p(S + 1)⟩

∣∣1〉 = 1√
2n

[0,N+1]∑
p,odd

√(
N + 1

p

)
|p(S + 1)⟩ .

If S = L + G, and N = max(L,G, 2D), and the
max Fock number is (N + 1)× (S + 1), then this
code can correct L photon losses, G photon gains,
and D dephasing errors.

The lowest order binomial code is∣∣0〉 =
|0⟩+ |4⟩√

2∣∣1〉 = |2⟩ ,

and this protects against one photon loss, that is,
the error set E = {I, â}.

Figure 2: Wigner functions for Cat and Binomial
codes.[CYWZS21]. For more onWigner functions,
see Appendix B

2.4 Cat Codes

After some thought, I see no way to improve over
the explanations given in Wikipedia: cat state
wiki.
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3 CV Bosonic Codes

Continuous Variable (CV) quantum computing
presents an entirely new set of errors: ε-sized
(complex valued) displacements in phase space.
In order to understand these errors, we’ll need to
define CV quantum computation.

3.1 From Qubits to Qudits to CV

Qubits are two-level systems with basis states |0⟩
and |1⟩. Qudits are d-level systems with basis
states |0⟩, |1⟩, . . . , |d− 1⟩. We can generalize the
Pauli X and Z operators to Xd and Zd, known
as the “shift” and “clock” operators. These are
defined so

Xd |n⟩ 7→ |n+ 1⟩
Zd |n⟩ 7→ ωn |n⟩ ,

where addition is done in Fd and ω = exp(2πi/d).

We can also look at the Fourier conjugate basis

|ωn⟩ := QFTd |n⟩ =
1√
d

d−1∑
m=0

ωn·m |m⟩ ,

where in the case of qubits, the Fourier conjugate
basis consists of |+⟩ and |−⟩. Physicists often re-
fer to the primal basis |0⟩ , |1⟩ , . . . , |d− 1⟩ as the
“position quadrature,” and the Fourier conjugate
basis

∣∣ω0
〉
,
∣∣ω1

〉
,
∣∣ω2

〉
, . . . ,

∣∣ωd−1
〉
as the “momen-

tum quadrature.” Position is associated with the
letter q, while momentum is associated with p.

One helpful tool for physicists is the Wigner func-
tion of a state, a quasiprobability distribution
over phase space which simultaneously gives in-
sight into the shape of the probability distribu-
tions for measuring a state in the position and
momentum quadratures. Phase space (no relation
to amplitude phases) is the abstract space where
each point is specified by a position and momen-
tum coordinate pair. For the rest of this paper, we
will assume familiarity with the Wigner function.
For more on the Wigner function, see Appendix
B.

Continuous Variable quantum computing arises in
the limit as d approaches infinity.

What this looks like is states defined by ampli-
tudes at each position along the real number line.
A number of interesting things happen in the
limit. Knowing a state with certainty in the po-
sition basis would mean that state is an equal su-
perposition of all infinitely many momentum basis
states, which is not normalizable. Because of this,
the best we can do is attempt to minimize uncer-
tainty in both bases, resulting in Gaussian states.
Reducing a Gaussian’s uncertainty in one quadra-
ture (squeezing) increases its uncertainty in the
other quadrature.

Next, note that the shift and clock operators in
the limit commute, because ZdXd = ωXdZd, and
ω = exp(2πi/d) → 1. This allows us to define a
new continuous operation generalizing both, the
displacement operator:

D(α) := exp(αâ† − α∗â).

Xk
d shifts a qudit’s discrete Wigner function k

units in the position basis, and Zk
d shifts it k units

in the momentum basis. Similarly, the displace-
ment operator shifts a state’s Wigner function by
Re(α) in the position basis and Im(α) in the mo-
mentum basis. Displacing the vacuum state by α
yields the coherent state

|α⟩ = 1√
e|α|2

∞∑
n=0

αn

√
n!

|n⟩ ,

where |n⟩ is expressed in the Fock basis.

Note that even arbitrarily small magnitude dis-
placements result in an orthogonal state. This is
very different from discrete variable quantum com-
puting, where small rotations result in states very
close to the initial state.

One important subclass of CV are the Gaussian
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states (all states with non-negative Wigner func-
tions) and Gaussian operations (displacement,
squeezing, and linear optics). These are classically
simulable. To state this a different way, any CV
computation with a non-negative Wigner function
that stays non-negative throughout is classically
simulable. [ME12]

The convenience of stabilizer codes comes from the
fact that F2 is cyclic with order 2, so stabilizing op-
erations are easy to find. In CV, we work over R,
so we need to get creative with our states in order
to define stabilizing operations (and consequently
the codespaces and syndrome measurements nec-
essary for a QECC). The GKP code achieves this.

3.2 The GKP Code

GKP codes were invented in 2001 by Gottesman,
Kitaev, and Preskill [GKP01]. The ideal GKP
codes are Dirac combs with codestates (expressed
in position space) defined by

|µ⟩gkp =
∑
n

∣∣(2n+ µ)
√
π
〉
q
, µ ∈ {0, 1}.

Here, the states |(2n+ µ)
√
π⟩q are idealized Dirac

delta functions, which are 0 everywhere except at

Figure 3: These states are called Dirac combs be-
cause when graphed in the q (position) or p (mo-
mentum) bases, the regularly spaced Dirac delta
functions look like combs. For unbiased error cor-
rection, we choose α =

√
π.

Stabilizing operations for the ideal GKP code are

Ŝq = D(i
√
2π) = ei2

√
πq̂

Ŝp = D(
√
2π) = e−i2

√
πp̂.

When we make the associated syndrome measure-
ments, we ideally snap back to the nearest code-
word. This means that the ideal GKP code can
perfectly correct from displacement errors of mag-
nitude less than

√
π/2. For larger displacements,

syndrome measurements would still snap the state
to the nearest codeword, but the nearest codeword
might not be the correct logical state. In order to
correct these logical errors, we would need to con-
catenate the GKP code with a conventional qubit
error correcting code [Wang17].

There is one other complication with syndrome
measurements: in CV, even the smallest displace-
ment changes the state to something orthogo-
nal. This means that states orthogonal to the
codespace are no longer all in the −1 eigenspace of
the stabilizers, so syndrome measurements don’t
behave quite as nicely as they did for stabilizer
codes. In practice syndrome measurements are of-
ten performed using something called homodyne
measurements [Bou et. al. 21].

Unfortunately, the ideal GKP code is not normal-
izable, and therefore can’t exist. In order to realize
the code, we need to relax the ideal code in two
ways: (1) we need to loosen each tooth of the Dirac
comb from a Dirac delta function to a (hopefully
very thin) Gaussian, and (2) we need to wrap the
whole wave function in a (hopefully very broad)
Gaussian envelope with peaks of the comb fading
the further we get from (q, p) = (0, 0). After these
corrections, the Wigner function of the GKP code
looks like this:

Figure 4: Logical |0⟩, |1⟩, |+⟩, and |−⟩ states in
the non-ideal GKP code, along with correspond-
ing syndrome measurement circuits.
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Figure 5: As we decrease the width of our en-
velope, the GKP codewords approach a Gaussian
and perform worse.

It’s possible to carry out Clifford gates on the logi-
cal qubits encoded in the GKP code through sym-
plectic operations. These operations can be imple-
mented through a combination of linear optics and
squeezing, both of which are Gaussian operations.

The most difficult aspect of the GKP code is en-
coding, since this is the only part of the code
which cannot be accomplished using only Gaus-
sian states and operations. The GKP codewords
themselves are not Gaussian. The initialization
scheme proposed in the original paper is to pre-
pare a squeezed state with p = 0 (as little uncer-
tainty in p as possible) and then measure q modulo
α =

√
π. This modulo measurement is achieved

by coupling the squeezed state for a short duration
to another oscillator which serves as a meter.

3.3 Hexagonal GKP Code

The performance of the GKP code can be greatly
improved by making it hexagonal. This re-
quires syndrome measurements in three quadra-
tures rather than two. The reason this improves
the code is that with hexagonal symmetry, a
larger fraction of potential error displacements are
within the maximum correctable distance.

Figure 6: The maximally mixed state encoded in
the GKP code (left) and hexagonal GKP code
(right). [NAJ19]

Figure 7: The Hexagonal GKP Code minimizes
the probability an error state is beyond the max-
imum correctable displacement.

3.4 Applications of the GKP Code

In 2006, Nielsen et. al. devised CV cluster states
that would allow for CV Measurement-Based
Quantum Computation (MBQC). These relied on
the GKP codestates as magic states: a source of
non-Gaussianity which allowed for quantum uni-
versality [Men. et. al. 06]. In 2021, Furusawa et.
al. showed how to create these CV cluster states
by using multiplexing to generate GKP codestates
[Asa et. al. 21]. Multiplexing is a way to speed up
postselection by running many instances of a prob-
abilistic process in parallel in order to increase the
chances of the desired outcome. In 2021, Dhand
et. al. gave a blueprint for scalable photonic Fault-
Tolerant Quantum Computation (FTQC) by cir-
cumventing the exponential cost of postselection
by replacing some proportion of GKP states in the
cluster state with more easily prepared squeezed
states. This was the ressult that eventually led
to Xanadu’s Borealis quantum computer, a fully
programmable 216-qubit photonic quantum com-
puter with quantum advantage.

In a related line of research, Menicucci et. al.
showed in 2019 that it’s possible to achieve univer-
sality with nothing but Gaussian elements. Their
main result is worth quoting:

Our main result is that a magic state
for logical Clifford QC (using a par-
ticular Bosonic code) can be found
within Gaussian QC. Thus, the union
of these two simulable subtheories is
universal and—with low enough phys-
ical noise—fault tolerant [BPAKM19].

The idea is to use GKP codes on Gaussian ini-
tial states (rather than the ideal GKP codewords),
and use the fact that these states can be used as
logical magic states in the GKP encoding.
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A Tree Diagram of Bosonic Code Families
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B Wigner Functions [Case08]

We can express any state ψ(x) in the momentum basis as

φ(p) =
1√
h

∫
e−ixp/ℏψ(x) dx = ⟨p|ψ⟩.

This is just a Fourier transform. The Wigner function of ψ is defined as

W (x, p) =
1

h

∫
e−ipy/ℏψ(x+ y/2)ψ∗(x− y/2) dy.

This function was defined to satisfy the properties∫
W (x, p) dp = ψ∗(x)ψ(x) and

∫
W (x, p) dx = φ∗(p)φ(p).

Gaussian States

Vacuum State Coherent State Squeezed State

Non-Gaussian States

1-photon Fock State 4-photon Fock State Cat State

Image source: http://old.rqc.ru/quantech/wiggalery.php
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