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1 Preliminaries: Properties of Unitary and Hermitian Matrices

Hermitian and unitary matrices are always diagonalizable, so we can express them in the form∑
j

αj |j⟩ ⟨j| . (1.1)

In the case of unitary matrices, these αj must be of the form eiθj for some θj ∈ [0, 2π), since unitaries
preserve norms. For every unitary matrix

U =
∑
j

eiθj |j⟩ ⟨j| , (1.2)

there is a Hermitian matrix

H =
∑
j

θj |j⟩ ⟨j| , (1.3)

satisfying U = eiH . We say this Hermitian matrix H is “the Hamiltonian generating U .”

2 SU(2), su(2), and the Pauli Basis

SU(n) is the group consisting of all n × n unitary matrices of determinant 1 under the group operation
of matrix multiplication. For a unitary U =

∑
j e

iθj |j⟩ ⟨j| in SU(n), this means det(U) =
∏

j e
iθj = 1, so∑

j θj = 0. In other words, the Hamiltonian generating U must have trace 0. SU(n) is known as a Lie
(pronounced “LEE”) group. If we multiply the Hamiltonians generating SU(n) by i, they form what’s
called the Lie algebra1 of SU(n), denoted by su(n). We might succinctly say SU(n) = esu(n).

Consider SU(2). Let’s represent elements of SU(2) by the Hamiltonians generating them. How can
we represent an arbitrary 2× 2 Hermitian matrix H with trace 0? The defining property of a Hermitian
matrix is that it is self adjoint, so H must have real entries along the diagonal and the off-diagonal entries
must be complex conjugates. This means that for H to be trace-0, it must be of the form

H =

ï
c a− bi

a+ bi −c.

ò
(2.1)

If we recall the Pauli matrices

σx =

ï
0 1
1 0

ò
, σy =

ï
0 −i
i 0

ò
, σz =

ï
1 0
0 −1

ò
, (2.2)

we see that we could equivalently represent H as v⃗ · σ⃗, where v⃗ = (a, b, c) ∈ R3 and σ⃗ = (σx, σy, σz). Since
any trace-0 Hermitian matrix can be represented this way, we say the Pauli matrices (after scaling by
i) form a basis for su(2). This also lets us see that for every U ∈ SU(2) there exists some v⃗ such that
U = eiv⃗·σ⃗. For reasons we’ll see shortly, a unique such v⃗ exists satisfying ∥v⃗∥ ∈ [0, 2π).

1The details aren’t important for this exposition, but we multiply by i to make the elements of su(n) skew-Hermitian so
that the Lie Algebra is closed under the Lie bracket, which in this case is the commutator [A,B] = AB −BA. See wiki.
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2.1 Diagonalizing in the Pauli Basis

To see how H := v⃗ · σ⃗ depends on the vector v⃗, let’s diagonalize it. The characteristic polynomial of H
is λ2 − a2 − b2 − c2, so the eigenvalues of H are ±

√
a2 + b2 + c2 = ±∥v⃗∥. Let’s denote the associated

eigenvectors of H by |v±⟩ so H |v±⟩ = ±∥v⃗∥ |v±⟩. We will solve for both eigenvectors simultaneously by
carefully keeping track of these ±’s. Since scaling an eigenvector by a complex number does not change
whether it is an eigenvector, we will choose to make |v±⟩ of unit length, with its first entry real and
non-negative.

First, note that if a = b = 0, then H is already diagonal with eigenvectors |v+⟩ = |0⟩ and |v−⟩ = |1⟩
having eigenvalues c and −c, respectively. For the rest of the analysis, we therefore assume a ̸= 0 or b ̸= 0,
or more succinctly, a+ bi ̸= 0. Note that this implies ∥v⃗∥ > c.

Say

|v±⟩ =
ï
x±
y±

ò
. (2.3)

For brevity, we will omit the subscripts on x± and y±. Since H |v±⟩ = ±∥v⃗∥ |v±⟩, we have

(H ∓ ∥v⃗∥I) |v±⟩ =
ï
c∓ ∥v⃗∥ a− bi
a+ bi −c∓ ∥v⃗∥

ò ï
x
y

ò
=

ï
0
0

ò
. (2.4)

Solving, we get

y =
a+ bi

c± ∥v⃗∥
x = ± a+ bi

∥v⃗∥ ± c
x, (2.5)

where the rearrangement was done to ensure the denominator is positive. Note that since the matrix in
equation 2.4 has determinant 0, (a+ bi)(a− bi) = a2 + b2 = (∥v⃗∥+ c)(∥v⃗∥ − c). We require |v±⟩ to be of
unit length with its first entry, x, being real and non-negative, so

⟨v±|v±⟩ = x∗x+ y∗y =

Å
1 +

a2 + b2

(∥v⃗∥ ± c)2

ã
x2 =

Å
1 +

∥v⃗∥ ∓ c

∥v⃗∥ ± c

ã
x2 =

Å
2∥v⃗∥

∥v⃗∥ ± c

ã
x2 = 1, (2.6)

meaning

x =

 
∥v⃗∥ ± c

2∥v⃗∥
=

1√
2

…
1± c

∥v⃗∥
, (2.7)

and

y = ± a+ bi

∥v⃗∥ ± c

 
∥v⃗∥ ± c

2∥v⃗∥
= ±(a+ bi)

 
∥v⃗∥ ∓ c

a2 + b2

 
1

2∥v⃗∥
= ± 1√

2

…
1∓ c

∥v⃗∥
a+ bi√
a2 + b2

. (2.8)

We conclude that for v⃗ = (a, b, c) ∈ R3, σ⃗ = (σx, σy, σz), and H := v⃗ · σ⃗, we can diagonalize H as
H = ∥v⃗∥ |v+⟩⟨v+| − ∥v⃗∥ |v−⟩⟨v−|, where either a+ bi = 0 and |v+⟩ = |0⟩ and |v−⟩ = |1⟩, or a+ bi ̸= 0 and

|v±⟩ =
1√
2


…

1± c

∥v⃗∥

±
…

1∓ c

∥v⃗∥
a+ bi√
a2 + b2

.

 (2.9)

The unitary generated by the Hamiltonian H can be similarly diagonalized, that is, U := eiH =
ei∥v⃗∥ |v+⟩⟨v+| + e−i∥v⃗∥ |v−⟩⟨v−|. Note that scaling v⃗ by a constant doesn’t change |v±⟩, and scaling v⃗
by a multiple of π simply multiplies U by −1.
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