Disclaimer (Last Updated June 2024)

The following four-page document is a research proposal I submitted to the DoD’s National Defense Science
and Engineering Graduate (NDSEG) Fellowship Program in November of 2023. If you’re just here to get an
idea of why I—a quantum computing PhD student—am interested in neuroscience, feel free to skip ahead
and just read the Motivation and Proposal sections.

This research proposal was rejected. While I still believe that the research program outlined here is a worth-
while pursuit, I agree that it was not appropriate for a PhD fellowship proposal. It was impractically ambitious,
with steps that were too large and dependent to guarantee completion within the duration of the fellowship. Ad-
ditionally, the project was at too early a stage to be presentable—the only progress I could share was progress |
hadn’t had time to confirm (I was sure to make this clear in the proposal).

I’ve fixed a few minor typos that were in the original document I submitted, but I’ve otherwise left the docu-
ment unchanged. I’ve kept the graphs and figures as they were when I submitted the document, despite the fact
that their remarkably accurate predictions turned out to be due to a programming error I found months later. For
more up-to-date (and far more believable) results of the model outlined in this proposal, you can see the most
recent commits in the GitHub repository linked in the text. If you don’t feel like checking it out yourself, suffice
to say the predictions made by the model are not great.

However, it remains to be seen whether this is due to the limitations of the data we currently have or an inability
of the model to capture important aspects of the C. elegans nervous system. Other researchers have recently tried
multiple machine-learning-based approaches to simulating the nervous system of C. elegans, and their models
are similarly successful (see the excellent work of Scaling Properties for Artificial Neural Network Models of a
Small Nervous System due to Quilee Simeon, Leandro Venéancio, Michael A. Skuhersky, Aran Nayebi, Edward
S. Boyden, and Guangyu Robert Yang). Many prominent researchers are working on collecting higher quality
data (data with longer recording durations, finer time resolution, and more labeled neurons) precisely for the goal
of reverse engineering an entire nervous system (see To reverse engineer an entire nervous system due to Haspel
et. al.). Even with the best data we could hope for, however, it’s possible that nervous systems are too chaotic for
any predictive model to be very successful.

If you’re a PhD student looking for funding, I highly recommend applying to the NDSEG fellowship yourself!
Now that I have a much better idea of what’s necessary for good research and a good research proposal—not to
mention much more familiarity with the literature surrounding this project—I’m much more optimistic about the
funding applications I’ll be submitting in the future.

With a little more storytelling, this entire disclaimer would do far better as a blog post. Maybe I'll start a blog!


https://www.biorxiv.org/content/10.1101/2024.02.13.580186v4
https://www.biorxiv.org/content/10.1101/2024.02.13.580186v4
https://arxiv.org/abs/2308.06578
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Motivation One of the central aspirations of science has been to understand the human mind and replicate its
strengths. Both neuroscience and computer science were founded with this purpose in mind, with neuroscience
seeking to break the complexity of the brain into its simplest components [ | ] and computer science seeking to build
complex “thinking” machines from simple parts [2]. The next frontier in this interdisciplinary mission will be
bridging the gap between humans and computers. Already, companies like Neuralink and Synchron are exploring
new human-computer interfaces for various medical applications. Some, however, intend to eventually use their
brain implants to connect people more directly to the internet. The concept is exciting, but also concerning. It
can be difficult to trust that companies like these will properly prioritize the safety of their products. Despite
troubling outcomes in animal trials [3], Neuralink has been approved by the FDA for human testing [4], and their
management has been rushing projects, encouraging unnecessary risks [5].

One risk that seems often overlooked is the issue of neurosecurity, the idea of protecting the neural machinery
and autonomy of an internet-connected person with neural implants from malicious parties on the internet [6].
Recent encouraging results with medical neural implants lend to the belief that it might be possible to connect
the brain to the internet without fully understanding how the brain works [7] [¢]. However, it is easier to break a
system than to fix it, and fixing a system usually requires knowledge of its inner workings. With this in mind, a
necessary prerequisite to the safety of brain-internet interfaces is building better models of the human brain and a
suite of neurosecurity innovations that can unobtrusively protect the brain from malicious input signals.

What might these malicious signals look like? In 1997, a Pokemon episode involving red and blue images
flashing at twelve frames per second—a stimulus that would never arise in nature—caused at least 600 children in
Japan to have seizures, convulsions, headaches, and vision problems [?]. The vast majority of these children had
never experienced a seizure before, and the percentage of viewers affected was far higher than the prevalence of
photosensitive epilepsy [10]. This particular incident was an accident, but one could imagine bad actors specifi-
cally designing more harmful stimuli. There are less dangerous and more correctable examples: optical illusions
are an example of how neural heuristics can sometimes fail, resulting in unexpected outcomes. Humans aren’t
unique in this regard; drawing a line in front of a chicken can cause it to freeze in place for up to half an hour, an
effect called tonic immobility [11].

Borrowing language from machine learning, in which adversarial noise can cause image classifiers to mis-
classify objects, I call these stimuli which result in maladaptive behavior adversarial stimuli. Here, maladaptive
means anything directly in opposition with the survival and well-being of the individual being stimulated. Note
that neural implants aren’t necessary to provide someone with adversarial stimuli, but implants will make acci-
dents like the 1997 Pokemon incident more likely and more dangerous. Millions of years of evolution have not
prepared the brain for the new stimuli it will soon be expected to process. The goal of this research project is to
demonstrate some risks and potential remediations of adversarial stimuli with the goal of advancing neurosecurity.

Proposal To make the project tractable, we will use the model organism C. elegans as a stand-in for humans
and explore the foundational principles of neurosecurity that might apply to any nervous system. We chose C. ele-
gans because the millimeter-long transparent worm has one of the best characterized and most easily manipulable
nervous systems. Researchers have identified all 302 of its neurons along with the physical [!2] and functional
[13] connections between them, providing us the luxury of studying its nervous system at the level of individual
synapes. The project consists of five stages:

Page 1



Stage 1: Construct and optimize a predictive model of the nervous system of C. elegans.

Stage 2: Use that model to search for stimuli that result in maladaptive behavior in the model.
Stage 3: Test whether the maladaptive responses predicted by the model are seen in C. elegans.
Stage 4: Use the model to discover neural manipulations that block malicious control.

Stage 5: Test which of these remediations work in real C. elegans specimens.

With C. elegans as a testbed, the hope is that insights from this research program might help us design neurosecu-
rity primitives that could be validated in more complex nervous systems (like rodents and primates) before being
adapted to humans. This research program is ambitious and will likely take years to complete, but each stage will
yield results that are useful in their own right and may spawn new research directions.

Ongoing Work With the guidance of Drs. Jon Pierce and Xuexin Wei, I've made progress on Stage 1,
creating and optimizing a predictive model that simulates the C. elegans nervous system at neuron activation
granularity. We want to understand how signals are propagated between and processed inside neurons, because
we will need the model to inform the ways we modify the nervous system in Stage 4. Naively using deep learning
to predict behavior directly from stimuli would be insufficient, for instance, because the black-box nature of the
weights in artificial neural nets makes it unclear how modifications to your model correspond with modifications to
the physical system you’re modeling. For this reason, we use a regression-based model, though we may augment
it with machine learning later. The goal of our model is to mimic the activation traces of every neuron in the C.
elegans nervous system. Due to the difficulty of directly measuring neuron voltages, we use an extensive public
collection of labeled whole-nervous system calcium traces [14] as a proxy for neural activation. We also have
access to the graph of physical [12] and functional [ 3] connections between neurons, the connectome.

Imagine f;() is our predicted activation at time ¢ for the neuron i. The first thing we might consider is the
simple recurrence fi(t) = af;(t — 1) + b, which has closed form f;(t) = b(1 +---+a'~!) +d' £;(0). This is a good
starting point because it can model constant (a = 0), linear (a = 1), and exponential (b = 0) behavior, all of which
are exhibited by neurons at various points of time. In order to switch between these regimes, however, we would
like a and b to be functions of the activations of neighboring neurons. For simplicity, we can imagine they are
linear functions of the activation history of all relevant neurons going as far back as wy; time steps for some wy,
we’ll call the width of relevant retention. Finally, we can extend our recurrence to depend on multiple prior values
of fi,so fi(t) =ap+a1fi(t — 1)+ -+ ayw, fi(t — ws) for some wg we’ll call the width of self retention.

This results in the following model: Fix some neuron i. Let R; be the set of neurons relevant to i (in our model,
we consider i and all incoming/outgoing neighbors to be relevant to i) and let r j; be the activation at time ¢ — k for
the jth neuron relevant to i. Let f;; be the activation of i at time # — /. Then, we posit that f;y is given by

Wrr Wsr
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for some constants c ;. Here, rjxc i represents a;. Our goal is then to learn the 3-dimensional tensor C given by
cji- If we pre-process our raw trace data, we can calculate the above formula for all # with just one matrix mul-
tiplication. Then, linear least squares regression explicitly solves for the C minimizing error. My implementation
of this model here can be found here: https://github.com/ironak/worms/blob/main/model.ipynb.

This model has a number of advantages. (1) It’s fast. The linear regression to calculate C takes less than half a
millisecond per neuron, which will be helpful if and when the model might be applied to more complex nervous
systems. (2) It’s parallelizable. The C for each neuron can be found individually, and then the results can be
combined to make a model of the whole nervous system. (3) Preliminary results show it fits the data surprisingly
well. For instance, our model explains 76% of the variance in the activation of the neuron AVAR. Other neurons
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https://github.com/ironak/worms/blob/main/model.ipynb

fare similarly well, but AVAR is a standout example because it is well connected and well represented in the data
we’ve been able to train on. We’re still in the early stages of the project though, so further work is necessary to
verify that the model is doing something non-trivial. I'm currently in the process of automating the search for the
appropriate values of wy and wg; for each neuron so that I can solve for C for each neuron and then use these C to
extrapolate a small bit of raw trace data as far as possible. How long will the simulation stay close to the truth?
Since the errors in the model will compound, a lot more optimization will be necessary.

How does this model compare with other models? One classic method for simulating time series data is the
Auto-Regressive Integrated Moving Average (ARIMA) model. Applying ARIMA to individual neurons results in
a very close fit for training data, but it doesn’t generalize well: the predictions made by the model on test data are
far from the ground truth, likely because ARIMA does not take into account signals from neighboring neurons.
We’re in the process of fitting an ARIMA model to multidimensional data, and we plan to also compare our model
to others based on neural nets.
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Figure 1: Column 1: Real calcium traces for the neuron AVAR. Top for training, bottom for testing. Column 2:
Our model fitted to training data and its predictions for test data. Test prediction explained variance = 0.89.
Column 3: ARIMA fitted to training data and predictions on test data. Test prediction is visibly worse, showing
how crucial connectome data is. Column 4: Real AVAR calcium traces from two datasets. Column 5: Our model
fitted to first dataset and predictions on second dataset. Explained variance = 0.76. Column 6: Model parameters
visualized as 17x3x2 tensor with red for positive values and blue for negative. To apply the learned parameters to
the second dataset, it was necessary to reorder entries and introduce one row of zero entries. Model parameters
suggest AVAR has a strong non-trivial dependence on AVAL and AVER. All real trace data sourced from [14].

Potential Outcomes Ideally, our model lets us reverse-engineer stimuli that cause maladaptive behavior
not previously observed. Perhaps a specific brief sequence of blue light pulses at light-sensitive neurons results
in C. elegans moving in a circle indefinitely, forgoing food. Then, the fix may be as simple as habituation or
might involve something more invasive, like ablation or silencing neurons through chemo- or optogenetics. With
more adversarial stimuli, we may find our solutions relying on error correcting codes or cryptographic hardness
assumptions for their safety guarantees. As we build up foundational principles and explore larger systems,
Neurosecurity may become as prominent and complex as cybersecurity.

Next Steps Individual neurons are complex signal processing systems [15] which can modify their behavior
through gene expression [16] and simultaneously handle multiple signals from various neurotransmitters [17].
Our model represents each neuron by a single number: its calcium activation. Future work might improve models
by capturing this complexity. Additionally, unlike human neurons, most C. elegans neurons are non-spiking [ 18],
so adversarial stimuli may look very different in humans. Even after this project is complete, a lot more work in
neurosecurity will be necessary before the human brain will be ready to be connected to the internet.
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